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BIDIRECTIONAL SPECTRAL-BASED TRANSFORMER FOR REMAINING 

USEFUL LIFE PREDICTION 

FIELD OF THE INVENTION 

[0001] The present invention relates to a bidirectional spectral-based transformer for 

remaining useful life prediction, in particular a method for predicting the remaining 

useful life of an engine based on a bidirectional spectral-based Transformer model. 

BACKGROUND OF THE INVENTION 

[0002] Prognostic and Health Management (PHM) is crucial to preventing the physics 

of failure and monitoring the degradation of sophisticated engineered systems. 

Remaining Useful Life (RUL) is one of the most important indicators for PHM because 

it allows for proactive monitoring of the health condition of systems, enabling timely 

predictive maintenance along with failure prevention. By using RUL prediction, 

appropriate maintenance can be scheduled for the system, without expending extra 

resources and time. 

[0003] There are two main approaches to prediction for PHM. A physical-based model 

is often used when there is a good understanding of a less obfuscated system. However, 

since most interactions in the system are not well understood, the practicality of the 

physical-based model is greatly reduced. Another popular approach to prediction is data-

driven. The increasing availability of sensors, along with advances in machine learning 

algorithms, has enabled the data-driven approach to achieve more accurate performance. 

The model can learn to estimate the health state of the system from its past data. 

[0004] Specifically, deep learning has been advancing rapidly and has superseded 

traditional machine learning methods in almost every field. An advantage of using a 

large neural network is that task-specific feature engineering is not required. Therefore, 

less handcrafted feature engineering is involved, and deep models can automatically 

generalize to different datasets without adjusting the network architecture. Furthermore, 

deep neural networks have much larger learning capacity, so they can capture very 

complicated mappings from input to output. There were many traditional machine 
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learning methods applied to the prognostic dataset, such as Support Vector Regressor 

(SVR), Relevance Vector Regressor (RVR), and Multi-layer perceptron (MLP). They all 

treat RUL estimation as a supervised regression problem. 

[0005] Most models failed to perform well on complex datasets as these models could 

not effectively extract the features of long and complex time series data. To predict the 

RUL for a complex system, the prediction model requires longer and longer prediction 

lengths. This implies the model should be capable of handling more past information. In 

order to meet the need for prediction in the long run, traditional time series prediction 

models, including ARIMA, are not competent enough as their concrete models need 

manual selection to account for various factors.  

[0006] In recent years, a new type of deep learning architecture has emerged and 

dominated various fields, including computer vision and natural language processing. 

The Transformer takes sequential data as input, and it has replaced LSTM as a popular 

choice for modelling sequential data. The excellent performance of the Transformer in 

handling time series can be attributed to its ability to preserve dimensionality. Both the 

sequence dimension and the feature dimension can be preserved and propagated through 

the layers.  

[0007] China Patent No. 113642414A discloses a rolling bearing residual service life 

prediction method based on Transformer model. The method for predicting the 

remaining service life comprising the steps of: denoising the original vibration signal of 

the rolling bearing by using Discrete Wavelet Transform (DWT); extracting time domain 

statistical characteristics from the denoised vibration signals of the rolling bearing to 

represent the degradation state of the rolling bearing; and training and using a deep 

neural network based on a Transformer model to complete the prediction of the residual 

service life of the rolling bearing. However, the positional encoding is added to the input 

embedding directly, without learnable attention in the Transformer model. The multi-

head attention processed the positional encoding and input embedding together which 

could create noise. There may also be a feature collapse in the deeper layer of the model. 

When features are passed to deeper layers, some information may be lost and subtle 

patterns may not be discoverable. Therefore, there is a need to have an improved method 

of predicting the remaining service life by solving the problem of mixing noise, 
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enhancing feature diversity and avoiding feature collapse in the deeper layer of the 

model.  

[0008] United States Patent No. 20160069775A1 discloses a method for processing data 

obtained from a condition monitoring system, which comprises the steps of obtaining 

dynamic signal data in the form of a time waveform and/or a Fast Fourier Transform 

(FFT) from at least one sensor; extracting at least two parameters from the time 

waveform and/or FFT and transmitting or displaying the at least two parameters instead 

of the dynamic signal time waveform data and/or FFT. The invention step of extracting 

at least two parameters is carried using Discrete Wavelet Transform (DWT), Continuous 

Wavelet Transform (CWT) or another time domain analysis. However, there may be a 

mixing noise and feature collapse in the deeper layer of the model. When features are 

passed to deeper layers, some information may be lost and subtle patterns may not be 

discoverable. Therefore, there is a need to have an improved method of predicting the 

remaining service life by solving the problem of mixing noise, enhancing feature 

diversity and avoiding feature collapse in the deeper layer of the model.  

[0009] China Patent No. 114297918A discloses an aero-engine residual life prediction 

method based on full attention deep network (Transformer) and dynamic ensemble 

learning. The method for predicting the remaining life of aero-engines, including the 

steps: calculating the remaining life RUL value of the training set data and the test set 

data; performing dimensionality reduction on the data subset FD001, and constructing a 

simulation data set; clustering the class centers and corresponding samples of the 

simulation data set; building the Transformer network module as the base learner; 

determining the weight of the base learner and the weighted ensemble output; and 

making predictions on test data. However, the positional encoding is added to the input 

embedding directly, without learnable attention in the Transformer model. The multi-

head attention processed the positional encoding and input embedding together which 

could create noise. There may also be a feature collapse in the deeper layer of the model. 

When features are passed to deeper layers, some information may be lost and subtle 

patterns may not be discoverable. Therefore, there is a need to have an improved method 

of predicting the remaining service life by solving the problem of mixing noise, 

enhancing feature diversity and avoiding feature collapse in the deeper layer of the 

model.  
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SUMMARY OF THE INVENTION 

[0010] It is an objective of the present invention to provide a method for predicting the 

remaining useful life of an engine based on a spectral-based Transformer model, which 

is lightweight, preserves more signal information and can reduce memory footprint and 

computational complexity.   

[0011] It is also an objective of the present invention to provide an enhanced of feature 

extraction ability of the network and an effective method for predicting the remaining 

useful life of an engine based on a bidirectional Transformer architecture.   

[0012] It is also a further objective of the present invention to provide a method for 

predicting the remaining useful life of an engine, which can prevent mixing noise into 

the model, feature collapse in the deeper layer and enhance feature diversity.  

[0013] Accordingly, these objectives may be achieved by following the teachings of the 

present invention. The present invention relates to a method for predicting the remaining 

useful life of an engine based on a bidirectional spectral-based Transformer model 

comprising: obtaining sensor data from at least one sensor; filtering sensor data; 

normalizing the sensor data; inputting the normalized data into a bidirectional spectral-

based Transformer model by adopting Discrete Cosine Transform (DCT); training the 

bidirectional spectral-based Transformer model based on a pre-set training data set; and 

predicting the remaining useful life of the engine based on the trained bidirectional 

spectral-based Transformer model. 

BRIEF DESCRIPTION OF THE DRAWINGS 

[0014] The features of the invention will be more readily understood and appreciated 

from the following detailed description when read in conjunction with the accompanying 

drawings of the preferred embodiment of the present invention, in which: 

[0015] FIG. 1 illustrates a diagram of the bidirectional spectral-based Transformer for 

remaining useful life prediction; 

[0016] FIG. 2 illustrates a diagram of the bidirectional architecture Transformer in FIG.1; 

[0017] FIG. 3a illustrates a diagram of the spectral-based Transformer in FIG.1;  
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[0018] FIG. 3b illustrates a diagram of the spectral-based Transformer method flow in 

FIG. 3a;  

[0019] FIG. 4 illustrates a diagram of the spectral-based attention with multi-head 

shortcut in FIG. 3a and FIG. 3b. 

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT 

[0020] For the purposes of promoting and understanding of the principles of the 

invention, reference will now be made to the embodiments illustrated in the drawings 

and described in the following written specification. It is understood that the present 

invention includes any alterations and modifications to the illustrated embodiments and 

includes further applications of the principles of the invention as would normally occur 

to one skilled in the art to which the invention pertains. 

[0021] The present invention teaches a method for predicting the remaining useful life 

of an engine based on a bidirectional spectral-based Transformer model 200 comprising: 

obtaining sensor data from at least one sensor; filtering sensor data; normalizing the 

sensor data; inputting the normalized data into a bidirectional spectral-based 

Transformer model 200 by adopting Discrete Cosine Transform (DCT); training the 

bidirectional spectral-based Transformer model 200 based on a pre-set training data set; 

and predicting a remaining useful life 108 of the engine based on the trained bidirectional 

spectral-based Transformer model 200. 

[0022] In a preferred embodiment of the present invention, the bidirectional spectral-

based Transformer model 200 is configured as a bidirectional neural network comprises 

a forward Transformer 202 and a backward Transformer 204. The forward Transformer 

202 and the backward Transformer 204 each comprise an encoder  and a decoder.  

[0023] In a preferred embodiment of the present invention, the inputting of the 

normalized data into a bidirectional spectral-based Transformer model 200 in the 

encoder, further comprises the steps of: inputting the normalized data to a linear 

projection layer for generating contextual embedding  in the encoder; passing through a 

multi-head spectral transform attention of the contextual embedding with a first multi-

head shortcut 330 in the encoder  to form a feature data; diversifying the feature data by 
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the first multi-head shortcut 330; passing the extracted feature data to an addition and 

normalization layer followed by a feed forward network; and providing a first encoder 

output to a next encoder along with an initial temporal attention.  

[0024] In a preferred embodiment of the present invention, the method further comprises 

the steps of: encoding positional and contextual information in the encoder by a United 

Positional and Contextual Attention (UPCA) 320; creating a positional embedding by a 

temporal-attention model; passing the positional embedding to a separate multi-head 

spectral transform attention with a second multi-head shortcut 332; fusing the output of 

the temporal attention with the output of the multi-head spectral transform by 

concatenation on the temporal dimension; and wherein the fusion  of the output is a 

linear layer in the embedding dimension; and the output dimensionally is the same as 

the original contextual embedding.  

[0025] In a preferred embodiment of the present invention, the inputting of the 

normalized data into a bidirectional spectral-based Transformer model 200 in the 

decoder, further comprises the steps of: passing embedding from the contextual 

embedding of the encoder   as input in the decoder; passing through a first multi-head 

self-attention of the contextual embedding  with a third multi-head shortcut 334 in the 

decoder  to form a feature data; diversifying the feature data by the third multi-head 

shortcut 334; passing the extracted feature data to an addition and normalization layer; 

passing through a second multi-head self-attention with a fourth multi-head shortcut 336 

in the decoder; diversifying the feature data by the fourth multi-head shortcut 336; and 

passing the extracted feature data to an addition and normalization layer and followed 

by a feed forward network; and flattening the output data and sending to a linear layer 

for obtaining a remaining useful life 108 for every time step in a sliding window.  

[0026] In a preferred embodiment of the present invention, the passing of the data 

through the multi-head shortcuts 330, 332, 334, 336 further comprises the step of 

inputting the positional embedding and contextual embedding   into a multi-head spectral 

transform, a residual connection 400 and a linear layer without any activation function. 

The method further comprises of combining and adding all the outputs before passing 

to an addition and normalization layer.  
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EXAMPLE 

[0027] A diagram of the bidirectional spectral-based Transformer for remaining useful 

life prediction is illustrated in FIG.1 wherein the flow comprises sensor data collection 

100, data feature engineering 102, data pre-processing 104, bidirectional spectral-based 

Transformer 200 and RUL information 108. The sensor data collection 100 involves 

collecting any sensor reading from at least one sensor and arranging it in a format to be 

processed by the RUL prediction model. The Commercial Modular Aero Propulsion 

System Simulation (C-MAPSS) dataset is used in the present invention, which is a 

widely used prognostics dataset. The dataset contains the sensor data from a run-to-

failure simulation. During the simulation, a series of sensor data was recorded and each 

engine with a different initial condition was degraded until a threshold was reached. 

Therefore, this dataset is used as a common RUL prediction benchmark. The objective 

of RUL prediction is to predict the number of cycles before a system runs into failure 

based on the sensor data.  

[0028] The C-MAPSS dataset consists of four sub-datasets (FD001-FD004), each with 

different operational conditions and fault conditions, as shown in Table 1. 

Table 1: A summary of the sub-datasets in C-MAPSS 

Sub-dataset FD001 FD002 FD003 FD004 

Training set 100 260 100 249 

Testing set 100 259 100 248 

Operational conditions 1 6 1 6 

Fault conditions 1 1 2 2 

Number of training samples 20631 53759 24720 61249 

Number of testing samples 100 259 100 248 

[0029] The operational conditions include single or different operational conditions, and 

the fault modes include fan degradation or high-pressure compressor (HPC) degradation. 

RUL prediction is essentially a time series regression:  

𝑋 = (𝑥𝑡|𝑡 = 1, … , 𝑅𝑈𝐿𝑚𝑎𝑥) …………………………(1)

wherein 𝑥𝑡 ∈ 𝑅𝑛,

𝑅𝑈𝐿𝑚𝑎𝑥 is the maximum number of cycles of the engine 
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        𝑌 = (𝑦𝑡|𝑡 = 1, … , 𝑅𝑈𝐿𝑚𝑎𝑥)………………………….(2) 

wherein 𝑦𝑡 ∈ 𝑅 

[0028] The aim in the present example is to use X to predict Y. During training, a fixed-

length sliding window of size w is applied to the time series. The input is now 

represented as: 

𝑋 = (𝑋𝑡
𝑤|𝑡 = 𝑤, … , 𝑅𝑈𝐿𝑚𝑎𝑥)…………………….(3)

wherein 𝑋𝑡
𝑤 = [𝑥𝑡−𝑤+1, … , 𝑥𝑡] ∈ 𝑅𝑛×𝑤

𝑌 = (𝑌𝑡
𝑤|𝑡 = 𝑤, … , 𝑅𝑈𝐿𝑚𝑎𝑥)…………………..(4)

wherein 𝑌 ∈ 𝑅1×𝑤

[0029] The window size is 40 for FD001 and FD003 whereas 60 for FD002 and FD004. 

This is because the FD002 and FD004 are more complicated, and hence require a longer 

sequence to train the model. 

[0030] The data features are further filtered and selected according to the Kolmogorov-

Smirnov test and Kendall's tau test in the tsfresh library. The sensors that are not 

statistically significant are dropped from the dataset. No additional feature engineering 

is used to generate more features for training. The filtered sensor data will be further 

normalized to make the training more stable. A standard way to normalize the sensor 

data is to subtract it from the mean and then divide it by the variance, as follows: 

z =  (x-u)/s ……………………………..…(5) 

wherein u and s denote the mean and standard deviation of the sensor data. 

[0030] The input of the normalized data will be further input to the bidirectional 

spectral-based Transformer model 200 as illustrated in FIG.1 wherein the input is a 2-D 
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tensor of data from multiple sensors over a sliding window of length w. The DCT is used 

to transform a signal into the frequency domain. The attention mechanism is much faster 

than self-attention when running on a Graphics Processing Unit (GPU) with the use of 

said DCT. Rather than using complex exponential kernels in the Fourier transform, DCT 

Attention (DCTA) uses cosine kernels. Therefore, DCT has the properties of high energy 

compaction and having a real spectrum, which can preserve more signal information and 

less computational complexity. In the present example, DCTA is adopted instead of the 

Fourier transform for self-attention in the encoder. The output y is real. A 1D DCT, 

denoted as D_emb, is first applied to the embedding dimension, and then another 1D 

DCT, denoted as D_seq, is applied to the sequence dimension, as follows: 

     𝑦 = 𝐷𝑠𝑒𝑞𝐷𝑒𝑚𝑏(𝑥)…………………………….(6) 

wherein x and y denote the input embedding and the DCTA output, respectively. 

[0031] The bidirectional spectral-based Transformer model 200 is trained based on a 

pre-set training data set to obtain a trained bidirectional spectral-based Transformer 

model 200. The remaining useful life of the engine is predicted based on the trained 

bidirectional spectral-based Transformer model 200. The last timestep in the sliding 

window of the output of the model is the current RUL prediction for the particular system. 

[0032] The bidirectional spectral-based Transformer model 200 in the present invention 

is configured as a bidirectional neural network. FIG.2 illustrates a diagram of the 

bidirectional architecture Transformer 200 wherein a reverse of the input sequence 

provides another perspective on the model in the bidirectional neural network. The 

bidirectional architecture Transformer 200 consists of a forward Transformer 202 

configured in the normal sequence and a backward Transformer 204 configured in the 

reverse sequence. They can be viewed as an ensemble of two models. The outputs of the 

two separate Transformers are concatenated and passed to a fully connected layer with 

ELU activation  and batch normalization. Then, the result is passed to a linear layer  to 

generate an output of the same length as the sliding window and estimate the RUL for 

each time step. The whole sequence in the bidirectional Transformer 200 can be 

processed without needing to be split into one input per timestep. Said bidirectional 

Transformer 200 provides excellent feature extraction for some complex tasks which 

have a long sequence. The weight from the past values is learnt to predict the future 
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values with said bidirectional learning. 

[0033] FIG. 3a and FIG. 3b illustrates a diagram of the spectral-based Transformer 200, 

which comprises an encoder  and a decoder, and details of the spectral-based 

Transformer method flow, respectively. There are two layers in the encoder  and decoder. 

The output of the Transformer 200 is a vector, where each value represents a RUL for 

every time step in the sliding window. The Mean Square Error loss is used to compare 

the predicted RUL and the ground-truth RUL. The inputting of the normalized data into 

a bidirectional spectral-based Transformer model 200 in the encoder, comprises the steps 

of: inputting the data  to a linear projection layer for generating contextual embedding 

in the encoder; passing through a multi-head spectral transform attention of the 

contextual embedding with a first multi-head shortcut 330 in the encoder; diversifying 

the feature by the first multi-head shortcut 330; passing the extracted feature to an 

addition and normalization layer and followed by a feed forward network; and providing 

the first encoder output to the next encoder along with the initial temporal attention.  

[0034] The method of inputting normalized data into the bidirectional spectral-based 

Transformer 200 in FIG.3a and FIG. 3b further comprises the steps of: encoding 

positional and contextual information in the encoder  by UPCA 320. The UPCA 320 

solves the problem of mixing noise, sensor data and positional data using an attention 

mechanism. Temporal attention is the output of learnable attention specifically designed 

for processing ordered sequences. The method further comprises of: creating a positional 

embedding by a temporal-attention model; passing the positional embedding to a 

separate multi-head spectral transform attention with a second multi-head shortcut 332; 

fusing the output of the temporal attention with the output of the multi-head spectral 

transform by concatenation on the temporal dimension, as below:  

𝐹𝑢𝑠𝑜𝑟 = 𝐶𝑜𝑛𝑐𝑎𝑡 (
𝐶𝑜𝑛𝑡𝑒𝑥𝑡𝑢𝑎𝑙 𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔,

 𝑇𝑒𝑚𝑝𝑜𝑟𝑎𝑙 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛
) 𝑊𝐹 ,………..(7)

[0035] wherein the fusion model  is a linear layer in the embedding dimension and the 

output dimensionally is the same as the original contextual embedding. Hence, a two-

dimensional relationship map is produced by the model. Unlike the traditional 

Transformer, the positional embedding is not directly added to the contextual embedding. 
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In doing so, the order of the sequence can be preserved without mixing up the contextual 

embeddings  and positional encoding. The dimensionality of the input and output from 

temporal attention  remains the same. Most importantly, the input and output of temporal 

attention are two-dimensional, which means that the time series has not been flattened, 

and more information and sequence order can be preserved during propagation. 

[0036] In addition, the concatenation operation does not remove any information from 

the embedding or the sequence dimension. The learnable fusion model  selects the 

important embedding in the contextual attention and temporal attention  for every time 

step, based on weighted summation. The learnable attention helps the fusion model 

investigate the relationship between each time step without explicit coding and assigning 

a weight to each time step for every embedding dimension. 

[0037] As further shown in FIG.3a and FIG. 3b, the inputting of the normalized data 

into a bidirectional spectral-based Transformer model 200 in the decoder, further 

comprises the steps of: passing the data from the contextual embedding  of the encoder 

as input in the decoder; passing through a first multi-head self-attention of the contextual 

embedding  with a third multi-head shortcut 334 in the decoder; diversifying the feature 

by the third multi-head shortcut 334; passing of the extracted feature to an addition and 

normalization layer; passing through a second multi-head self-attention with a fourth 

multi-head shortcut 336 in the decoder; diversifying the feature by the fourth multi-head 

shortcut 336; and passing of the extracted feature to an addition and normalization layer 

followed by a feed forward network; and flattening the output and sending to a linear 

layer for obtaining a remaining useful life for every time step in a sliding window.  

[0038] FIG. 4 illustrates an example diagram of the spectral-based attention with the 

first multi-head shortcut 330 in FIG.3a and FIG. 3b. The spectral-based attention is 

applicable to the first 330, second 332, third 334 and fourth 336 multi-head shortcuts in 

the present invention. The first multi-head shortcut 330 uses a simple linear projection 

layer, which comprises the steps of inputting the positional embedding and contextual 

embedding  into a multi-head spectral transform, a residual connection 400 and a linear 

layer without any activation function. The second step of inputting via residual 

connection 400 is different from the residual connection in the original Transformer, 

because the shortcut passes the input to the fusion model, not directly to the 
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normalization layer. The features are projected into a different feature space in the third 

step of inputting via linear layer without any activation function. This can produce a 

distinct feature in parallel to the original one. All the outputs will be combined and added 

before passing to an addition and normalization layer. Therefore, the first multi-head 

shortcut 330 could enhance the feature diversity and avoid feature collapse in the deeper 

layer, in addition to the standard residual connection. Said multi-head shortcut is 

introduced by said three pathways, as illustrated in FIG.4 and below:  

𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑 𝑆ℎ𝑜𝑟𝑡𝑐𝑢𝑡𝑠 =  𝑇(𝑥) +  𝑥 + ∑ 𝑊𝑖(𝑋𝑖)
𝑑
𝑖=1 ,  () () 

wherein T( ) is the Multi-Head Spectral Transform, 

x is the input, and  

d is the dimension of the input embedding. 

[0039] The method for predicting the remaining useful life of an engine based on the 

spectral attention mechanism in the present invention outperforms state-of-the-art deep 

models for RUL prediction by at least 30% in terms of RMSE and 50% in terms of score 

on hard sub-datasets as illustrated in Table 2. Accordingly, the proposed BST (DCT) 

achieves the best result in the hardest sub-dataset FD004. It indicates that BST (DCT) 

has the capacity to handle more complicated trend and pattern. 

Table 2: Comparison table 

Model FD001 FD002 FD003 FD004 

MLP [9] 37.56 80.03 37.39 77.37 
SVR [9] 20.96 42.00 21.05 45.35 
RVR [9] 23.80 31.30 22.37 34.34 
CNN [9] 18.45 30.29 19.82 29.16 

DW-RNN [7] 22.52 25.90 18.75 24.44 
MTL-RNN [7] 21.47 25.78 17.98 22.82 
LSTMBS[8] 14.89 26.86 15.11 27.11 
LSTM [6] 16.14 24.49 16.18 28.17 

DCNN [39] 12.61 22.36 12.64 23.31 
Semi supervised [40] 12.56 22.73 12.10 22.66 

EN [41] 13.58 19.59 19.16 22.15 
Transfer learning [42] 19.65 29.43 22.40 29.95 

Proposed 

BST (DCTA) 12.18 12.81 12.32 13.95 
BST (FCTA) 12.33 12.82 12.71 14.02 

BST (FTA-RI) 12.55 12.84 12.09 14.07 
% change (DCTA) -3% -35% +2% -37% 
% change (FCTA) -2% -35% 5% -37% 

% change (FTA-RI) 0% -34% 0% -36% 

Model FD001 FD002 FD003 FD004 

MLP [9] 17972 7802800 17409 5616600 
SVR [9] 1382 589900 1598 371140 
RVR [9] 1503 17423 1432 26509 
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CNN [9] 1287 13570 1596 7886 
LSTMBS[8] 481 7982 493 5200 
LSTM [6] 338 4450 852 5550 

DCNN [39] 274 10412 284 12466 
Semi supervised [40] 231 3366 251 2840 

EN [41] 228 2650 1727 2901 
Proposed 

BST (DCTA) 212 834 222 1136 
BST (FCTA) 230 913 243 1296 

BST (FTA-RI) 253 1008 220 1236 

% change (DCTA) -7% -69% -12% -60% 
% change (FCTA) +1% -66% -3% -54% 

% change (FTA-RI) +11% -62% -12% -56% 

[0040] Said spectral-based can effectively bridge the performance gap between the easy 

and hard sub-datasets in C-MAPSS, where the performance is more stable. This can 

facilitate the models’ generalization on different datasets. In particular, the use of 

Spectral-based Attention (SBA) based on DCT can make the Transformer have a simpler 

design and the output of the transform is real, rather than complex. The lightweight 

attention mechanism, based on SBA, can perform better than the traditional self-

attention mechanisms on small datasets, which is very useful because it is difficult and 

costly to collect sufficient amounts of training data from complicated systems.  

[0041] The method for predicting the remaining useful life of an engine based on the 

bidirectional Transformer 200 in the present invention provides an efficient prediction 

of RUL. The UPCA 320 and multi-head shortcuts 330, 332, 334, 336 allow the model to 

better understand the input time sequence and, thus, achieve better performance than 

absolute positional encoding  for RUL prediction. A potential future direction of this 

research is the use of Transformer and lightweight self-attention for RUL prediction or 

other time-series regression tasks. 

[0042] The present invention explained above is not limited to the aforementioned 

embodiment and drawings, and it will be obvious to those having an ordinary skill in the 

art of the prevent invention that various replacements, deformations, and changes may 

be made without departing from the scope of the invention.  
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CLAIMS 

WHAT IS CLAIMED: 

1. A method for predicting the remaining useful life of an engine based on a

bidirectional spectral-based Transformer model (200) comprising:

obtaining sensor data from at least one sensor; 

filtering the sensor data; 

normalizing the sensor data;  

inputting the normalized data into a bidirectional spectral-based 

Transformer model (200) by adopting Discrete Cosine Transform (DCT); 

training the bidirectional spectral-based Transformer model (200) based 

on a pre-set training data set; and 

predicting a remaining useful life (108) of the engine based on the trained 

bidirectional spectral-based Transformer model (200). 

2. The method for predicting the remaining useful life of an engine based on a

bidirectional spectral-based Transformer model (200) according to claim 1,

wherein the bidirectional spectral-based Transformer model (200) is configured

as a bidirectional neural network comprises a forward Transformer (202) and a

backward Transformer (204).

3. The method for predicting the remaining useful life of an engine based on a

bidirectional spectral-based Transformer model according to claim 2, wherein the

forward Transformer (202) and the backward Transformer (204) each comprise

an encoder and a decoder.

4. The method for predicting the remaining useful life of an engine based on a

bidirectional spectral-based Transformer model (200) according to claim 2,

wherein the inputting of the normalized data into the bidirectional spectral-based

Transformer model (200) in the encoder, further comprising the steps of:

inputting the normalized data to a linear projection layer for generating 

contextual embedding in the encoder;  
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passing through a multi-head spectral transform attention of the 

contextual embedding with a first multi-head shortcut (330) in the encoder to 

form a feature data;  

diversifying the feature data by the first multi-head shortcut (330); 

passing the extracted feature data to an addition and normalization layer 

and followed by a feed forward network; and 

providing a first encoder output to a next encoder along with an initial 

temporal attention. 

5. The method for predicting the remaining useful life of an engine based on a

bidirectional spectral-based Transformer model (200) according to claim 4,

wherein the method further comprising the steps of:

encoding positional and contextual information in the encoder by an 

Untied Positional and Contextual Attention (UPCA) (320);   

creating a positional embedding by a temporal-attention model; 

passing the positional embedding to a separate multi-head spectral 

transform attention with a second multi-head shortcut (332);  

fusing the output of the temporal attention with the output of the multi-

head spectral transform by concatenation on the temporal dimension; and 

wherein the fusion of the output is a linear layer in the embedding 

dimension and the output dimensionally is the same as the original contextual 

embedding.  

6. The method for predicting the remaining useful life of an engine based on a

bidirectional spectral-based Transformer model (200) according to claim 4,

wherein the inputting of the normalized data into a bidirectional spectral-based

Transformer model (200) in the decoder, further comprising the steps of:

passing embedding from the contextual embedding of the encoder as 

input in the decoder;  

passing through a first multi-head self-attention of the contextual 

embedding with a third multi-head shortcut (334) in the decoder to form a feature 

data;  

diversifying the feature data by the third multi-head shortcut (334);  

passing the extracted feature data to an addition and normalization layer; 
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passing through a second multi-head self-attention with a fourth multi-

head shortcut (336) in the decoder;  

diversifying the feature data by the fourth multi-head shortcut (336); and 

passing the extracted feature data to an addition and normalization layer 

and followed by a feed forward network; and 

flattening the output data and sending to a linear layer for obtaining a 

remaining useful life (108) for every time step in a sliding window. 

7. The method for predicting the remaining useful life of an engine based on a

bidirectional spectral-based Transformer model according to claim 4, 5 or 6,

wherein the passing of the data through the multi-head shortcuts (330, 332, 334,

336) further comprising the step of inputting the positional embedding and

contextual embedding into a multi-head spectral transform, a residual connection 

(400) and a linear layer without any activation function.
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