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A SYSTEM AND METHOD OF POWER MOSFET DIAGNOSTIC AND
LIFETIME ESTIMATION USING AI ALGORITHM

FIELD OF THE INVENTION

[0001] The present invention relates to a system and method of power MOSFET
diagnostic and lifetime estimation, in particular a health diagnostic and lifetime

estimation method and system using an Al algorithm for power MOSFET.
BACKGROUND OF THE INVENTION

[0002] Metal Oxide Silicon Field Effect Transistors, commonly known as MOSFETs
are electronic devices used to switch or amplify voltages in circuits. A power MOSFET
is a specific type designed to handle significant power levels. The degradation of Power
MOSFETSs occupies a dominant position among the key factors affecting the reliability
of power electronic circuits. Normally, the failure sites of the degraded power MOSFETs
are inside the package and invisible from the outside, which makes it difficult to study
the failure modes and mechanisms. Although there are several fault prediction methods
and systems for power MOSFETs on the existing market, these methods and systems
may not be able to detect and predict the failure of the internal structure and/or inside

the package of the device.

[0003] The failure of the internal structure that was not detected or predicted may
increase unexpected machine downtime and maintenance costs due to a sudden
breakdown. Other than that, different failure modes of power MOSFETs may be detected
by different failure precursors such as Drain-source on-state resistance (Rds,on), Gate
threshold voltage (Vth), Diode Forward Voltage (Vsd), Zero Gate voltage drain current
(Idss), Drain-source breakdown voltage (V(br)dss), Drain-source on-state voltage (Von),
Input Capacitance (Ciss), Output Capacitance (Coss) and Reverse Capacitance (Crss).
However, the current fault prediction method and system may not be able to detect a
variety of different failure modes at the same time. Therefore, there is a need to have an
improved method and system that can understand and detect different failure modes

during the degradation of power MOSFETs.
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[0004] China Patent Publication No. 107315138B discloses a fault prediction and health
processing method and a test system for a power MOSFET. The method and system
comprise the steps of: selecting a test sample of a MOSFET device, analyzing test data
and establishing a characteristic parameter based on three parameters of drain-source
voltage, drain current and device shell temperature. The failure threshold value is
determined by the basic prior degradation model E, then the model E is trained by
utilizing test data of the actual detected device, the characteristic parameters of the model
are corrected, the residual service life of the MOSFET device is predicted by calculation,
the health evaluation result is output, and the device is subjected to health processing.
However, the method and system are based on physic-based modelling in predicting
faults and health of MOSFETs. This may require fundamental knowledge of the
MOSFET die degradation mechanism and the assembly-related parameters required to
develop an accurate model. It also requires extensive data on the device’s operating
conditions, stress history and material properties. These data may not always be
available or be difficult to obtain in practice. It also anticipates challenges when
predicting the failure of complex systems in real-world applications without well-

defined physical models to describe the degradation.

[0005] Korean Patent Publication No. 102452596 B1 discloses an apparatus and method
for diagnosing MOSFETSs. The apparatus is a device for diagnosing a MOSFET provided
on a charge or discharge path of a cell assembly and configured to control conduction of
a charge or discharge current, and is electrically connected to a gate terminal and a source
terminal of the MOSFET. A processor is configured to diagnose whether the MOSFET
is faulty by comparing the potential difference measurement value with a previously
stored normal potential difference value. However, the apparatus and method do not
disclose the lifetime estimation of power devices, which could provide an early warning

to the user.

[0006] United States Patent Publication No. 20230194593 discloses a switching device
in an alternate fuel transfer manifold and methods for estimating the remaining useful
life of the switching device. The method comprises: estimating a health signature of the
switching device while it is in use, calculating a health state estimation matrix by
modelling the degradation of a health signature, determining the health state using the

health state estimation matrix, forecasting and causing a notification to an output device.
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However, the method may not provide wide coverage of potential failure parameters in
different aspects and capture all possible failure modes that may not be apparent from

measuring just one or two parameters.

SUMMARY OF THE INVENTION

[0007] It is an objective of the present invention to provide a health diagnostic and
lifetime estimation method and system for power MOSFETs that adopts an AI algorithm
that could determine different failure modes during the degradation of power MOSFETs

and therefore improve the performance and reliability of the end products.

[0008] It is also an objective of the present invention to provide a non-destructive
inspection method and system for power MOSFETs to check the health condition of an

internal structure of the degraded devices easily and conveniently on a regular basis.

[0009] Itis also a further objective of the present invention to provide a health diagnostic
and lifetime estimation method and system for power MOSFETs that can provide early
warning of potential failures, allow proactive maintenance and replacement of faulty

devices, and therefore reduce unexpected machine downtime and maintenance costs.

[0010] It is also an objective of the present invention to provide a health diagnostic and
lifetime estimation method and system for power MOSFETs that can be applied to
different kinds of power devices and therefore cover a wide range of applications that

require power switching and control.

[0011] Accordingly, these objectives may be achieved by following the teachings of the
present invention. The present invention relates to a power metal-oxide-semiconductor
field-effect transistor (MOSFET) diagnostic and lifetime estimation system, comprising:
a data acquisition module with a degradation test setup and potential failure precursor
measurements; a diagnostic module with a thermal transient measurement and a
scanning acoustic microscopy; wherein a remaining lifetime of a power MOSFET device

is estimated using an artificial intelligence (AI) algorithm.

BRIEF DESCRIPTION OF THE DRAWINGS
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[0012] The features of the invention will be more readily understood and appreciated
from the following detailed description when read in conjunction with the accompanying

drawings of the preferred embodiment of the present invention, in which:

[0013] FIGS.1 illustrates a flowchart diagram of the power MOSFET diagnostic and

lifetime estimation method in the present invention;

[0014] FIGS.2a-2b illustrate thermal transient measurement curves revealing the
progress of degradation at the die-attach layer inside the package of DUTI and the intact
curves for DUT10 without degradation at the die-attach layer;

[0015] FIGS.3a-3c¢ illustrate the results of die attach delamination, bond wire

degradation, and health samples, respectively;

[0016] FIGS.4a-4b illustrate failure precursors with predictable features for body diode
voltage versus aged power cycles and on-state resistance versus aged power cycles in

lifetime estimation, respectively;

[0017] FIGS.5a-5c illustrate examples of prediction results for the failure precursors of

the failed sample; and

[0018] FIGS.6a-6¢ illustrate the performance prediction results of training and

validation losses for Idss, Rds,On and Vsd.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

[0019] For the purposes of promoting and understanding of the principles of the
invention, reference will now be made to the embodiments illustrated in the drawings
and described in the following written specification. It is understood that the present
invention includes any alterations and modifications to the illustrated embodiments and
includes further applications of the principles of the invention as would normally occur

to one skilled in the art to which the invention pertains.

[0020] The present invention teaches a power metal-oxide-semiconductor field-effect

transistor (MOSFET) diagnostic and lifetime estimation system, comprising: a data
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acquisition module comprises a degradation test setup and potential failure precursor
measurements; a diagnostic module comprises a thermal transient measurement and a
scanning acoustic microscopy; wherein a remaining lifetime of a power MOSFET device

is estimated using an artificial intelligence (AI) algorithm.

[0021] In a preferred embodiment of the present invention, the power metal-oxide-
semiconductor field-effect transistor (MOSFET) diagnostic and lifetime estimation
system comprising: a data acquisition module with a power cycling test and potential
failure precursor measurements; a diagnostic module with a thermal transient
measurement and a scanning acoustic microscopy; wherein a remaining lifetime of a

power MOSFET device is estimated using an artificial intelligence (Al) algorithm.

[0022] In a preferred embodiment of the present invention, the degradation test setup in
the data acquisition module is a power cycling test and such power cycling test is
conducted as an accelerated lifetime test (ALT) for acquiring degradation data. A
thermo-sensitive electrical parameter (TSEP) is measured for conducting the power

cycling test and is configured to indirectly determine junction temperature.

[0023] In a preferred embodiment of the present invention, the potential failure
precursor measurements in the data acquisition module is configured to provide early
warning of failure by measuring potential failure precursors against a pre-determined

failure threshold through conducting power cycling tests.

[0024] In a preferred embodiment of the present invention, the potential failure
precursors comprise Drain-source on-state resistance (Rds,on), Gate threshold voltage
(Vth), Diode Forward Voltage (Vsd), Zero Gate voltage drain current (Idss), Drain-
source breakdown voltage (V(br)dss), Drain-source on-state voltage (Von), Input

Capacitance (Ciss), Output Capacitance (Coss) and Reverse Capacitance (Crss).

[0025] In a preferred embodiment of the present invention, the diagnostic module is
configured to inspect and diagnose health condition of the internal structure (die-attach
layer and bond wires) of the power MOSFET device using thermal transient

measurement and scanning acoustic microscopy (SAM) images.
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[0026] In a preferred embodiment of the present invention, the AI algorithm comprises
a long short-term memory (LSTM) machine learning model 110 wherein the LSTM

machine learning model is further trained and evaluated.

[0027] The present invention also teaches a method of power metal-oxide-
semiconductor field-effect transistor (MOSFET) diagnostic and lifetime estimation 100,
comprising the steps of: acquiring degradation data by conducting a degradation test;
measuring potential failure precursors to provide early warning of failure 106; inspecting
and diagnosing health condition of internal structure of the power MOSFET device using
thermal transient measurement and scanning acoustic microscopy (SAM) images 108;
repeating power‘cycling test and the measurements of potential failure precursors until
the precursors reach a corresponding failure threshold; and estimating remaining lifetime

of the power MOSFET device using an artificial intelligence (AI) algorithm.

[0028] In a preferred embodiment of the present invention, the acquiring of degradation
data further comprises the steps of: performing a power cycling test on a power
MOSFET device in the degradation test and measuring a thermo-sensitive electrical
parameter (TSEP) to determine a junction temperature for the power cycling test 102;
and repeating cycles of the power cycling test 104 with high current and high-

temperature stress, followed by a period of relaxation at lower temperature and current.

[0029] In a preferred embodiment of the present invention, the estimating of remaining
lifetime comprises the steps of: conducting data preparation and preprocessing to extract
predictable features for prognostics and lifetime estimation 109; removing noise and
normalizing the degradation data; and feeding the normalized degradation data into the
Al algorithm; wherein the Al algorithm comprises a long short-term memory (LSTM)

machine learning model 110.

[0030] In a preferred embodiment of the present invention, the removing of noise further
comprises the step of: using a moving average filter (MAF) to avoid noise in the

degradation data.

[0031] Ina preferred embodiment of the present invention, the method further comprises
the steps of: training the LSTM machine learning model with training data 112;

predicting next value of the precursors of power MOSFETs 114; and evaluating the
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performance of neural network algorithm.

[0032] In a preferred embodiment of the present invention, the training of the model
comprises the step of: using adaptive moment optimization (Adam) to optimize and

adapt the learning rate for each neural network in model training.

[0033] Ina preferred embodiment of the present invention, the method further comprises
the steps of: dropping out regularization during training of the model; and using a
predetermined batch size and a predetermined epoch size corresponding to size of

degradation data and training data.

[0034] In a preferred embodiment of the present invention, the batch size is 32 and the

epoch size is 50 to prevent overfitting.

[0035] The numbers for the batch size and for the epoch size are defined based on
prediction results. It can be generalized to a range. For instance, the batch size can be
determined based on the size of the dataset. The dataset for the prediction based on the
precursor data is not very large in size, thus, a batch size between 32 to 128 is acceptable.

Keeping the batch size small is one known way of preventing overfitting.

[0036] Similarly, the epoch size is set to 50 for a balance where the model should be
able to achieve satisfactory performance and also not be time-consuming, based on the

general dataset size for this kind of prediction.

[0037] Ina preferred embodiment of the present invention, the method further comprises
the step of simultaneously updating output feedback to the LSTM machine learning

model.
EXAMPLE

[0038] A flowchart diagram of the power MOSFET diagnostic and lifetime estimation
in the present invention is illustrated in FIG.1. The method comprises the steps of:
acquiring degradation data; and measuring a thermos-sensitive electrical parameter
(TSEP) to determine a junction temperature for a power cycling test setup under a
constant junction temperature condition 102. The drain-source saturation voltage at a

small, constant measurement current, which is approximately linearly dependent on the
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junction temperature, is used as the TSEP of the power MOSFETs. The method further
comprises the step of running the power cycling tests 104. However, it is optional for
the user to use other methods of acquiring degradation data, which subsequently do not

need to determine or measure the TSEP.

[0039] The method further comprises the steps of measuring potential failure precursors
to provide early warning of failure 106; inspecting and diagnosing health condition of
the internal structure of the MOSFET device using thermal transient measurement and
SAM images 108; repeating the power cycling test and measuring of potential failure
precursors until the precursors reach a corresponding failure threshold. The repeating of
the power cycling test includes high current and high temperature stress, followed by a
period of relaxation at a lower temperature and current. The power cycling test provides
a realistic simulation of the device’s operation because it subjects the MOSFET to the
same types of stresses that it would experience during normal use, such as temperature
and current cycling. The said potential failure precursors comprise Rds,on, Vth, Vsd,
Idss, V(br)dss, Von, Ciss, Coss, and Crss. The potential failure precursors are obtained
and measured at the pristine stage and after certain power cycles, wherein these potential
failure precursors are selected to represent the critical I-V and C-V characteristics of the
power MOSFETs for a comprehensive diagnostic. The power cycle interval length is
designed to ensure the data drifts can be captured precisely and not missed. Therefore,
the present invention could identify different failure modes based on the corresponding
changes in the failure precursors during the degradation of power MOSFETs and

therefore improve the performance and reliability of the products.

[0040] The thermal transient measurement and SAM image taking are performed
regularly in the present invention to inspect and diagnose the health condition of the
internal structure of the MOSFET device and correlate the changes in electrical
parameters for the degraded devices. This is because usually, the failure sites of the
degraded power MOSFETSs are inside the package and invisible from the outside, which
makes it difficult to study the failure modes and mechanisms. The thermal transient
measurement shows the changes in the cumulative thermal capacitance and resistance
along the heat flow path from the die to the substrate. FIG.2 illustrates the thermal
transient measurement curves, wherein FIG.2a shows the changes of the curves which

reveal the progress of the degradation at the die-attach layer inside the package of DUT1
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and FIG.2b shows the intact curves for DUT10 without degradation at the die-attach
layer. The curve shifts to the right with the power cycling test continuing in FIG.2a,
wherein it indicates that the thermal resistance of the die-attach layer increases. The
SAM images show any delamination or voids that occurred inside the package. The
results of die attach delamination and bond wire degradation are observed in FIG.3a and
FIG.3b, wherein FIG.3¢ shows healthy samples. Therefore, the non-destructive
inspection method of having the thermal transient measurement and SAM image could
be beneficial for users to understand the physical changes that happened inside the

package during sample degradation.

[0041] The power cycling tests will be repeated if the precursors do not exceed the
failure thresholds by 20 percent of the initial values, whereas data preparation and
preprocessing are conducted if the failure precursors exceed the failure thresholds. The
precursors are considered failure precursors in the present invention as they have
predictable features that can be used for lifetime estimation. FIG.4a and FIG.4b show
the failure precursors with predictable features for body diode voltage versus aged power
cycles and on-state resistance versus aged power cycles in lifetime estimation,

respectively.

[0042] The method further comprises passing through the degradation data that
exceeded failure thresholds with preliminary screening, removing noise, and
normalizing. At this stage, the normalized data could be fed into the Al algorithm of the
LSTM machine learning model. However, the simple moving average filter (MAF) with
k=3 is further used in the present invention to avoid noise in the original data using the

eguation below:

1
X = = T g Ty vevensonensviioses (1)

[0043] The LSTM algorithm is used in the present invention to deal with time series
data. 30 pieces of data are used for the prediction of the next data value. The LSTM
model configuration is considered to have two hidden layers with 128 and 64 neurons
and one output layer. The method further comprises training the LSTM model; and
estimating the remaining lifetime of the power MOSFET device. Adam is used to

optimize and adapt the learning rate for each neural network weight in model training.
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One of the common drawbacks of training neural network algorithms, in particular
LSTM, is overfitting. Therefore, dropout regularization (0.2), an epoch size of 50, and a
batch size of 32 are used in the present invention to prevent overfitting. The summary of

the LSTM model architecture is listed in Table 1.

Table 1: Summary of the LSTM Model Architecture

Model Number of optimizer training loss Dropout  Activation
Units function
LSTM (128, 64) Adam Mean Squared Error 0.2 relu

[0044] The examples of prediction results for the failure precursors of the failed sample
are shown in FIGS. 5a-5c¢, with Idss prediction, Rds,on prediction, and Vsd prediction.
The performance of the proposed algorithm is further evaluated in the present invention

by calculating the loss in terms of MSE of the prediction results in the equation below:
—lyn _2_ 1lym 5.2
MSE = o &i=1 e = ;Zi=1(yf s yl) ................... (2)

[0045] The performance prediction results of training and validation losses for Idss,

Rds,On and Vsd are shown in FIGS.6a-6¢, respectively.

[0046] The power MOSFET diagnostic and lifetime estimation system and method in
the present invention are useful for the maintenance of power systems by providing early
warning of potential failures based on the collected failure precursor data, monitoring
the internal health on a regular basis, and enabling the capture of abnormal behaviour
before catastrophic failure happens. In addition, the lifetime of the power MOSFET can
be estimated by the prediction results achieved from the failure precursor data with the
aid of machine learning algorithms used in the present invention, allowing for proactive
maintenance and replacement of faulty devices. The LSTM algorithm allows the
degradation information to persist and is well-suited to capturing these nonlinear
relationships between the inputs and the outputs. This makes data-driven models less
complex and easier to develop compared to physics-based models. Therefore, this could

reduce unexpected machine downtime and maintenance costs.

[0047] Furthermore, the power MOSFET diagnostic and lifetime estimation system and
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method in the present invention are not limited to a specific type of power MOSFET.
The data-driven machine learning method in the present invention enables the possibility
of applying it to different kinds of power devices, including but not limited to MOSFETs,
IGBTs, SiC MOSFETS, etc. The active power cycling test in the present invention could
reproduce the working conditions for different power devices due to their similarities in
working principles, such as thermal stress under high power. The electrical
characteristics of the power devices and the structure inside the package are also similar,
so the methods are universally applicable. The machine learning algorithm is capable of
handling time series data of different electrical parameters and devices, which therefore,
the user could feed any data considered to have predictable features to the model for
prediction. Accordingly, the system and method of the present invention could cover a
wide range of applications that require power switching and control, including but not

limited to automotive, aerospace, power generation, and telecommunications.

[0048] The present invention explained above is not limited to the aforementioned
embodiment and drawings, and it will be obvious to those having an ordinary skill in the
art of the present invention that various replacements, deformations, and changes may

be made without departing from the scope of the invention.
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I
CLAIMS
WHAT IS CLAIMED:
1. A power metal-oxide-semiconductor field-effect transistor (MOSFET)

diagnostic and lifetime estimation system, comprising:

a data acquisition module with a degradation test setup and potential
failure precursor measurements;

a diagnostic module with a thermal transient measurement and a scanning
acoustic microscopy;

wherein a remaining lifetime of a power MOSFET device is estimated

using an artificial intelligence (AI) algorithm.

2. The power metal-oxide-semiconductor field-effect transistor (MOSFET)
diagnostic and lifetime estimation system, according to claim 1, wherein the
degradation test setup in the data acquisition module is a power cycling test and
such power cycling test is conducted as an accelerated lifetime test (ALT) for

acquiring degradation data.

3. The power metal-oxide-semiconductor field-effect transistor (MOSFET)
diagnostic and lifetime estimation system, according to claim 2, wherein a
thermo-sensitive electrical parameter (TSEP) is measured for conducting the

power cycling test and is configured to indirectly determine junction temperature.

4, The power metal-oxide-semiconductor field-effect transistor (MOSFET)
diagnostic and lifetime estimation system, according to claim 3, wherein the
potential failure precursor measurements in the data acquisition module is
configured to provide early warning of failure by measuring potential failure

precursors against a pre-determined failure threshold through conducting power

cycling tests.

)8 The power metal-oxide-semiconductor field-effect transistor (MOSFET)
diagnostic and lifetime estimation system, according to claim 4, wherein the
potential failure precursors comprise Drain-source on-state resistance (Rds,on),

Gate threshold voltage (Vth), Diode Forward Voltage (Vsd), Zero Gate voltage
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10.

drain current (Idss), Drain-source breakdown voltage (V(br)dss), Drain-source
on-state voltage (Von), Input Capacitance (Ciss), Output Capacitance (Coss) and

Reverse Capacitance (Crss).

The power metal-oxide-semiconductor field-effect transistor (MOSFET)
diagnostic and lifetime estimation system, according to claim 1, wherein the
diagnostic module is configured to inspect and diagnose health condition of the
internal structure of the power MOSFET device using thermal transient

measurement and scanning acoustic microscopy (SAM) images.

The power metal-oxide-semiconductor field-effect transistor (MOSFET)
diagnostic and lifetime estimation system, according to claim 1, wherein the Al

algorithm comprises a long short-term memory (LSTM) machine learning model

(110).

The power metal-oxide-semiconductor field-effect transistor (MOSFET)
diagnostic and lifetime estimation system, according to claim 7, wherein the

LSTM machine learning model (110) is further trained and evaluated.

A method of power metal-oxide-semiconductor field-effect transistor (MOSFET)
diagnostic and lifetime estimation (100), comprising the steps of:

acquiring degradation data by conducting a degradation test;

measuring potential failure precursors to provide early warning of failure
(106);

inspecting and diagnosing health condition of internal structure of the
power MOSFET device using thermal transient measurement and SAM images
(108);

repeating power cycling test and the measurements of potential failure
precursors until the precursors reach a corresponding failure threshold; and

estimating remaining lifetime of the power MOSFET device using an

artificial intelligence (AI) algorithm.

The method of power metal-oxide-semiconductor field-effect transistor
(MOSFET) diagnostic and lifetime estimation, according to claim 9, wherein the

acquiring of degradation data further comprises the steps of:
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12.

13

14.

performing a power cycling test on a power MOSFET device in the
degradation test and measuring a thermos-sensitive electrical parameter (TSEP)
to determine a junction temperature for the power cycling test (102); and

repeating cycles of the power cycling test (104) with high current and
high-temperature stress, followed by a period of relaxation at lower temperature

and current,

The method of power metal-oxide-semiconductor field-effect transistor
(MOSFET) diagnostic and lifetime estimation, according to claim 9, wherein the
estimating of remaining lifetime comprises the steps of:

conducting data preparation and preprocessing to extract predictable
features for prognostics and lifetime estimation (109);

removing noise and normalizing the degradation data; and

feeding the normalized degradation data into the AI algorithm;

wherein the Al algorithm comprises a long short-term memory (LSTM)

machine learning model (110).

The method of power metal-oxide-semiconductor field-effect transistor
(MOSFET) diagnostic and lifetime estimation, according to claim 11, wherein
the removing of noise further comprises the step of:

using a moving average filter (MAF) to avoid noise in the degradation

data,

The method of power metal-oxide-semiconductor field-effect transistor
(MOSFET) diagnostic and lifetime estimation, according to claim 11, wherein
the method further comprises the steps of:
training the LSTM machine learning model with training data (112);
predicting next value of the precursors of power MOSFETS (114); and

evaluating the performance of neural network algorithm.

The method of power metal-oxide-semiconductor field-effect transistor
(MOSFET) diagnostic and lifetime estimation, according to claim 13, wherein
the training of the model (112) comprises the step of:

using adaptive moment optimization (Adam) to optimize and adapt the

learning rate for each neural network in model training.
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15.

16.

17.

The method of power metal-oxide-semiconductor field-effect transistor
(MOSFET) diagnostic and lifetime estimation, according to claim 14, wherein
the method further comprises the steps of:

dropping out regularization during training of the model; and

using a predetermined batch size and a predetermined epoch size

corresponding to size of degradation data and training data.

The method of power metal-oxide-semiconductor field-effect transistor
(MOSFET) diagnostic and lifetime estimation, according to claim 15, wherein

the batch size is 32 and the epoch size is 50 to prevent overfitting.

The method of power metal-oxide-semiconductor field-effect transistor
(MOSFET) diagnostic and lifetime estimation, according to claim 13, wherein
the method further comprises the step of simultaneously updating output

feedback to the LSTM machine learning model (110).
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On-state Resistance vs. Aged Power Cycles
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